
About Lab 6

So where are we with the interpreter project?

I changed the due date of Lab 5B to Friday April 6. If you haven't
completed it yet you should get it done; what is coming next is much
more interesting.

Just to remind you, in Lab 5B you created a module env.rkt. This
module has data types for our interpreter's environment. This
includes constructor

(extended-env syms vals old-env)

Lab 5B also calls for a lookup function
(lookup env sym)

that returns the value bound to symbol sym in environment env.

In the last in-person class we had I outlined the first two parts of Lab 6.
In Labs 6 and 7 we implement step by step a language I call
MiniScheme which has most of the functionality of real Scheme. Our
interpreter design calls for two modules. One is module parse.rkt that
contains a function (parse input). This function takes an expression
(such as '(let ([f (lambda (x) (+ x 1))]) (f 5))) and builds a parse tree
that represents the expression. Module parse.rkt also contains
definitions of all of the parse tree datatypes. The other module is
interp.rkt. This contains function (eval-exp tree env) that evaluates a
parse tree in a particular environment.

Here is code I wrote on the board for the first two steps: MiniSchemeA
(which contains only numbers) and MiniSchmeB (which also contains
symbols).

The parser is
(define parse (lambda (input)

(cond
[(number? input) (new-lit-exp input)]
[(symbol? input) (new-var-ref input)]
[else (error 'parse "Invalid syntax ~s" input)])))

The interpreter for MiniSchemeB has this for eval-exp:

(define eval-exp (lambda (tree env)
(cond

[(lit-exp? tree) (lit-exp-num tree)]
[(var-ref? tree) (lookup env (var-ref-sym tree))]
[else (error 'eval-exp "Invalid tree: ~s" tree)])))

The parser file should also contain definitions of the tree data types:
lit-exp: constructor new-lit-exp, recognizer lit-exp? and getter lit-exp-num
var-ref: constructor new-var-ref, recognizer var-ref? and getter var-ref-sym

The parser should provide those symbols and the interpreter should
require the parser.

These are the simple cases; be sure you understand how they fit
together.

Suppose we make a new file called MiniScheme.rkt and have this
require env.rkt, parse.rkt and interp.rkt. In this file we might say

(define T (parse 23))

This makes T into a parse tree: ('lit-exp 23)
Lab5B asks you to build a top-level environment called init-env. If we
run (eval-exp T init-env) it uses the lit-exp getter to pull the number
out of T and returns it: 23.

Lab5B asks you to provide a few variable bindings in init-env. Here is
where we can use them. Let's assume init-env binds symbol x to 10. If
we define T1 in the MiniScheme.rkt file as (parse 'x), then
(eval-exp T1 init-env) first pulls the symbol x out of the tree T1, then
looks it up in the envirionment init-env to get value 10.

MiniSchemeB thus gives us constants and pre-bound symbols. This
isn't very exciting, but it is a start.

Before we go on, there is a step that will make testing your work
easier. Our workflow is first (define T (parse expression)) and then
(eval-exp T init-env).

To simplify this, we give you a link to a file called REP.rkt. Download
this into the same directory as env.rkt, parse.rkt, and interp.rkt. Open
up REP.rkt and make it require your three files:

(require "env.rkt")
(require "parse.rkt")
(require "interp.rkt")

Change your MiniScheme.rkt file so that it requires REP.rkt and give it
one line for its body:

(read-eval-print)

If you run the MiniScheme file it will pop up a textbox into which you
can type expressions. Anything you type will be given to the parser and
its output will be sent to eval-exp with the environment init-env. For
example, if you type number 55 into the textbox it will reply 55. If you
type x (no need for quotes) into the textbox it will give you the value
init-env binds to x. As MiniScheme expressions get more complicated
this will be a big time-saver.

For this to work your top-level objects must use exactly the names REP
expects: parse, eval-exp, and init-env. With anything else (such as
your datatypes) you can use any names you please.

You can now see how Labs 6 and 7 go. Each step adds one new kind of
expression. You extend the parser to to build a parse tree for the
expression, then you extend eval-exp to evaluate this parse tree. The
grammar is recursive, as are parse and eval-exp, so you can mix up
sub-expressions to produce very elaborate expressions.

